

Table of Contents

High Bend / Bend Insensitive Fibers	
Corning [®] HI 780 & 780 C Specialty Optical Fibers	1
Corning [®] HI 980 & RC HI 980 Specialty Optical Fibers	3
Corning [®] HI 1060 & RC HI 1060 Specialty Optical Fibers	5
Corning [®] HI 1060FLEX & RC HI 1060 FLEX Specialty Optical Fibers	7
Corning [®] RC 1300 and RC 1550 Specialty Optical Fibers	9
Erbium-Doped Fibers	
Corning [®] HICER 98 Specialty Optical Fibers	11
Corning [®] ER Specialty Optical Fibers	13
High Temperature / Harsh Environment Fibers	
Corning \degree Hermetic Single-mode and Multimode Specialty Optical Fibers	17
Corning [®] Mid-Temperature Specialty Optical Fibers	19
Corning [®] ClearCurve [®] Single-mode Mid-Temperature Specialty Optical Fibers for Harsh Environments	21
Corning [®] ClearCurve [®] Multimode Mid-Temperature Specialty Optical Fibers for Harsh Environments	23
Corning [®] ClearCurve [®] Multimode Mid-Temperature Specialty Optical Fibers for Short Distance Networks	25
Special Single-Mode Fibers	
Corning [®] RC SMF Specialty Optical Fibers	27
Corning [®] RGB 400 Specialty Optical Fibers	29
Corning [®] ClearCurve [®] Photonic Specialty Optical Fibers	31
Corning [®] SMF-28e+ [®] Photonic Optical Fibers	33
Corning [®] ClearCurve [®] XB Specialty Optical Fibers	37
PANDA / Polarization Control Fibers	
PANDA PM Specialty Optical Fibers	41
PANDA Flame Retardant Specialty Optical Fibers	45
PANDA High NA Specialty Optical Fibers	47
PANDA Bend Insensitive Specialty Optical Fibers	49
RGB PM Specialty Optical Fibers	51

Corning[®] HI 780 & HI 780C Specialty Optical Fibers High Index / Bend Insensitive

CORNING

Manufactured with Corning's patented Outside Vapor Deposition (OVD) process, *Corning*[®] *HI* 780 *Specialty Fiber* offers world-class durability and reliability. When used as component piqtails, this fiber allows for efficient fiber coupling within photonic products. It also offers reduced bend attenuation due to its *high core index of refraction. Corning[®] HI 780 Specialty Fiber* is capable of operating with short wavelength laser and LED sources. Corning now offers a re-engineered version, HI 780C, which delivers non-adiabatic taper loss during component manufacturing. HI 780C is a coupler-optimized design that allows for steeper tapers and shorter couplers with lower losses.

For low loss fused couplers, high performance components and small footprint assemblies

Applications:

- Low loss fused fiber couplers
- Component fiber for couplers, and other DWDM components
- Short wavelength laser and LED sources
- Sensors and gyroscopes

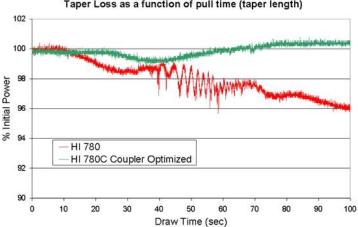
- Outstanding consistency and uniformity using Corning's patented Outside Vapor Deposition (OVD) process
- Dual acrylate coating system provides excellent protection from microbend-induced attenuation and superior mechanical robustness
- Excellent geometry control
- High core index of refraction
- Efficient coupling
- High numerical aperture

HI 780 and HI 780C*

Key Optical Specifications

Operating Wavelength (nm)	> 780
Cutoff Wavelength (nm)	720 ± 50
Maximum Attenuation (dB/km)	4.3 @ 780 nm 3.0 @ 850 nm
Mode-field Diameter (µm)	4.6 ± 0.5 @ 780 nm 5.0 ± 0.5 @ 850 nm

* HI 780C - Coupler optimized (see graph below)


Key Geometric, Mechanical and Environmental Specifications

Cladding Outside Diameter (µm)	125 ± 0.5
Coating Outside Diameter (µm)	245 ± 10
Core-to-Cladding Offset (µm)	≤ 0.3
Standard Lengths	500 m, 1 km, 2, km, 5 km
Proof Test (kpsi)	100 or 200
Operating Temperature (°C)	-60 to 85

Performance Characterizations**

Nominal Delta (%)	0.4	15
Numerical Aperture	0.1	4
Refractive Index Value - Core	1.463 @	651 nm
Bendloss (20 mm O.D.; 850 nm) (dB/turn)	< 0.	05
Core Diameter (µm)	4.	0
	HI 780	НІ 78оС
Dispersion (ps/nm/km)	-132 @ 780 nm	-135 @ 780 nm
	-99 @ 850 nm	-102 @ 850 nm

** Values in this table are nominal or calculated values

HI 780 and HI 780C Single Fiber Pull at 850nm Taper Loss as a function of pull time (taper length)

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com © 2010 Corning Incorporated

M0100006 Issued: March 2010 Supersedes: January 2008

Corning[®] HI 980 & RC HI 980 Specialty Optical Fibers High Index / Bend Insensitive

CORNING

Manufactured with Corning's patented Outside Vapor Deposition (OVD) process, Corning® HI 980 Specialty Fiber offers world-class durability and reliability. When used as component pigtails, this fiber allows for efficient fiber coupling within photonic products. It also offers reduced bend attenuation due to its high core index of refraction.

Industry standard for 980 pump pigtails for high performance components and small footprint assemblies

Applications:

HI 980

- Single-mode performance at 980 nm and above
- Component fiber for EDFAs, couplers, and other DWDM components
- Pigtails for pump lasers
- Gratings
- RC HI 980
- Component fiber for EDFAs, couplers, and other DWDM components
- Pigtails for pump lasers

Features:

HI 980 and RC HI 980

- Outstanding consistency and uniformity using Corning's patented Outside Vapor Deposition (OVD) process
- Dual acrylate coating system provides excellent protection from microbend-induced attenuation and superior mechanical robustness
- Excellent geometry control
- High core index of refraction
- Mode-field diameter matched to erbium-doped fiber, allowing for efficient coupling
- High proof test for increased reliability in tight bend configurations
- High numerical aperture
- RC HI 980 provides 80 µm diameter for miniature packaging

ŀ	11	980
---	----	-----

RC HI 980

Key Optical Specifications	
Operating Wavelength (nm)	> 980
Cutoff Wavelength (nm)	930 ± 50
Maximum Attenuation (dB/km)	\leq 2.5 @ 980 nm
Mode-field Diameter (µm)	4.2 ± 0.3 @ 980 nm

Key Geometric, Mechanical and Environmental Specifications

Cladding Outside Diameter (µm)	125 ± 0.5	80 ± 1
Coating Outside Diameter (µm)	245 ± 10	165 ± 10
Core-to-Cladding Offset (µm)	≤ 0.3	\leq 0.5
Standard Lengths	500 m, 1 km, 2, km,	5 km, 10 km
Proof Test (kpsi)	100* or 2	00
Operating Temperature (°C)	-60 to 8:	5

*100 kpsi only available for RC HI980

Performance Characterizations**

Nominal Delta (%)	1.0
Numerical Aperture	0.21
Refractive Index Value – Core	1.471 @ 651 nm
Bendloss (20 mm O.D.; 1550 nm) (dB/turn)	\leq 0.01
Core Diameter (µm)	3.5
Dispersion (ps/nm/km)	-63 @ 980 nm

** Values in this table are nominal or calculated values

Typical Splice Loss

	RC SMF Fiber	HI 980
Wavelength (nm)	1550	980
RC HI 980 (dB)	0.11	0.05

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com

Corning[®] HI 1060 & RC HI 1060 Specialty Optical Fibers High Index / Bend Insensitive

CORNING

Industry standard for 980 pump pigtails for high performance components and small footprint assemblies

Manufactured with Corning's patented Outside Vapor Deposition (OVD) process, Corning® HI 1060 Specialty Fiber offers world-class durability and reliability. When used as component pigtails, this fiber allows for efficient fiber coupling within photonic products.

Applications: HI 1060

- Photonic products and fused fiber couplers
- Component fiber for EDFAs, couplers, and other DWDM components
- Laser diode pigtails
- Gratings

RC HI 1060

- Component fiber for EDFAs, couplers, and other DWDM components
- · Pigtails for pump lasers

Features:

HI 1060 and RC HI 1060

- Outstanding consistency and uniformity using Corning's patented Outside Vapor Deposition (OVD) process
- Dual acrylate coating system provides excellent protection from microbend-induced attenuation and superior mechanical robustness
- Excellent geometry control
- High core index of refraction
- Efficient coupling
- High numerical aperture
- RC HI 1060 offers 80 µm diameter for miniature packaging

	HI 1060	RC HI 1060
Key Optical Specifications		
Operating Wavelength (nm)	>	980
Maximum Attenuation (dB/km)	9	980 nm
· ·	<u> </u>	1060 nm
Cutoff Wavelength (nm)		± 50
Mode-field Diameter (µm)		@ 980 nm @ 1060 nm
	0.2 ± 0.5	
Key Geometric, Mechanical and Environmenta	I Specifications	
Cladding Outside Diameter (µm)	125 ± 0.5	80 ± 1
Coating Outside Diameter (µm)	245 ± 10	165 ± 10
Core-to-Cladding Offset (µm)	≤ 0.3	≤ 0.5
Standard Lengths	500 m, 1 km, 2 km, 5 km, 10 km*	
Proof Test (kpsi)	100 or 200	
Operating Temperature(°C)	-60 to 85	
*10 km lengths only available for HI 1060		
Performance Characterizations**		
Nominal Delta (%)	0	48
Numerical Aperture	0	14
Refractive Index Value – Core	1.464 (4) 651 nm
Dispersion (ps/nm/km)	-53 @	980 nm
	-38 @	1060 nm
Bendloss (@ 20 mm O.D.; 1150 nm) (dB/turn)	≤ 0.01	
Core Diameter (µm)	5	5.3
** Values in this table are nominal or calculated values		
values in this table are nonlinal of calculated values		

Typical Splice Loss

	HI 1060	RC PANDA PM 980	SMF-28e+ Fiber	RC SMF Fiber
Wavelength (nm)	1550	980	1550	1550
RC HI 1060 (dB)	0.04	0.07	0.16	0.08

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com

Corning[®] HI 1060 FLEX & RC HI 1060 FLEX Specialty Optical Fibers High Index / Bend Insensitive

CORNING

Manufactured with Corning's patented Outside Vapor Deposition (OVD) process, Corning[®] HI 1060 FLEX Specialty Fiber sets the world-wide standard for uniformity and reliability. Completely re-engineered for fused biconic taper component manufacturing, this specialty fiber is ideal for use in smaller footprint components and EDFAs. Combining ultra-low bending loss, low insertion loss, and excellent spliceability, Corning[®] HI 1060 FLEX Specialty Fiber enables higher yields and performance throughout the value chain.

High performance WDM components and ultra-low bend loss applications

Applications:

- Pigtails for bend-insensitive applications
- Premium grade WDM couplers for EDFAs
- Tap couplers
- Splitters and combiners
- CATV couplers
- Ultra-compact components requiring small bend radii
- Low loss fused devices for C-Band and L-Band

Features:

HI 1060 FLEX and RC HI 1060 FLEX

- Outstanding consistency and uniformity using Corning's patented Outside Vapor Deposition (OVD) process
- Dual acrylate coating system provides excellent protection from microbend-induced attenuation and superior mechanical robustness
- Ultra-low bending loss
- Low excess loss
- Low splice loss to SMF-28e+[®] fiber and Corning ER 1550C3
- Excellent geometry control
- RC HI 1060 FLEX offers 80 µm diameter for sub-miniature packaging

HI 1060 FLEX

Key Optical Specifications

Operating Wavelength (nm)	> 980
Maximum Attenuation (dB/km)	$\leq 2.5 @ 980 \text{ nm}$ $\leq 1.0 @ 1550 \text{ nm}$
Cutoff Wavelength (nm)	$930 \pm 40 \text{ nm}$
Mode-field Diameter (µm)	4.0 ± 0.3 @ 980 nm 6.3 ± 0.3 @ 1550 nm

Key Geometric, Mechanical and Environmental Specifications

	•		
Cladding Outside Diameter (µm)	125 ± 0.5	80 ± 1	
Coating Outside Diameter (µm)	245 ± 10	165 ± 10	
Core-to-Cladding Offset (µm)	≤ 0.3	≤ 0.5	
Standard Lengths	500 m, 1 km, 2 km, 5 km, 10 km		
Proof Test (kpsi)	100 or 200		
Operating Temperature (°C)	-60 to 85		

Performance Characterizations*

Nominal Delta (%)	1.0
Numerical Aperture	0.22
Refractive Index Value – Core	1.472 @ 651 nm
Dispersion (ps/nm/km)	-65 @ 980 nm -50 @ 1060 nm
Bendloss (@ 20 mm O.D., 1550 nm) (dB/turn)	≤ 0.01
Core Diameter (µm)	3.4

* Values in this table are nominal or calculated values

Typical Splice

	HI 1060 FLEX	SMF-28e+ [°]	RC SMF	ER 1550C3	HI 1060	HI 980	PM 980
Wavelength (nm)	1550	1550	1500	1550	980	980	980
HI 1060 FLEX (dB)	0.03	0.07		0.03	0.06	0.04	0.09
RC HI 1060 FLEX (dB)		0.22	0.12	0.08			

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com

Corning[®] RC 1300 and RC 1550 Specialty Optical Fibers High Index / Bend Insensitive

CORNING

Manufactured with Corning's patented Outside Vapor Deposition (OVD) process, Corning[®] RC 1300 and RC 1550 Specialty Fibers offer worldclass durability and reliability with a reduced cladding of 80 μ m (compared to the industry standard of 125 μ m). The reduced cladding allows extremely tight fiber coiling with low bend loss, enabling a range of system designs not possible with standard specialty fibers.

Reduced cladding fiber for small size coils and assemblies

Applications:

- Devices requiring extremely tight bend radius coils
- Dense wavelength division multiplexing (DWDM) components
- Compact optical circuits
- Sensors

- Outstanding consistency and uniformity using Corning's patented Outside Vapor Deposition (OVD) process
- Dual acrylate coating system provides excellent protection from microbend-induced attenuation and superior mechanical robustness
- Reduced cladding (80 µm)
- Excellent geometry control
- High core index of refraction
- Efficient coupling

	RC 1300	RC 1550
Key Optical Specifications		
Operating Wavelength (nm)	> 1280	> 1480
Maximum Attenuation (dB/km)	0.7 @ 1300 nm	0.5 @ 1550 nm
Cutoff Wavelength (nm)	1220 ± 50	1420 ± 50
Mode-field Diameter (µm)	5.5 ± 0.5 @ 1300 nm	6.5 ± 0.5 @ 1550 nm

Key Geometric, Mechanical and Environmental Specifications

Cladding Outside Diameter (µm)	80 ± 1
Coating Outside Diameter (µm)	165 ± 10
Core-to-Cladding Offset (µm)	≤ 0.5
Standard Lengths	500 m, 1 km, 2 km, 5 km, 10 km
Proof Test (kpsi)	100
Operating Temperature (°C)	-60 to 85

Performance Characterizations*

Nominal Delta (%)	1	.0	
Numerical Aperture	0.20		
Refractive Index Value - Core	1.458 @) 1550 nm	
Bendloss (@ 10 mm O.D.; 1300 nm) (dB/turn)	\leq (0.01	
Bendloss (@ 20 mm O.D.; 1550 nm) (dB/turn)	<< 0.01		
Dispersion (ps/nm/km)	-9 @ 1300 nm	12 @ 1500 nm	
Core Diameter (µm)	4.9	5.7	

* Values in this table are nominal or calculated values

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com

Corning[®] HICER 98 Specialty Optical Fiber High Index Coupler Fiber

HICER 98 Splice-Optimized Coupler Fiber

A new addition to the *Corning*[®] *FBT* coupler optimized fiber family; *HICER 98* is the ideal fiber for applications where a single splice recipe is required. Designed for splicing flexibility to industry standard Erbium and single-mode fibers, *HICER 98* benefits from Corning's Outside Vapor Deposition (OVD) process consistency, allowing for large quantities of fiber with identical composition which minimizes coupler turning time.

Applications:

- Couplers and Optical Components
- WDM Couplers
- CATV Couplers
- Splitters and Combiners

- Splice-Optimized to Industry Standard Erbium and Single-mode Fibers
- Versatile Splicing with a Single Splice Recipe
- No New Splice Recipe Required
- Outstanding Consistency and Uniformity Using Corning's Patented
 Outside Vapor Deposition (OVD) Process
- Dual Acrylate Coating System Provides Excellent Protection from
 Microbend Induced Attenuation and Superior Mechanical Robustness

HICER 98

Key Optical Specifications

Operating Wavelength (nm)	980, 1550
Cutoff Wavelength (nm)	≤ 960
Maximum Attenuation (dB/km)	≤ 2.5 @ 980 nm
	≤1.0 @ 1550 nm
Mode-field Diameter (µm)	5.0 ± 0.3 @ 980 nm
	7.5 ± 0.75 @ 1550 nm

Key Geometric, Mechanical and Environmental Specifications

Cladding Outside Diameter (µm)	125 ± 0.5
Coating Outside Diameter (µm)	245 ± 10
Core-to-Cladding Offset (µm)	≤ 0.3
Proof Test (kpsi)	200
Operating Temperature (°C)	-60 to 85
Coating	Dual UV Acrylate
Recommended Minimum Bending Radius (mm)	30

Performance Characterizations*

Nominal Delta/Profile (%)	0.68
Numerical Aperture	0.17
Refractive Index Value – Core	1.467 @ 651 nm
Dispersion (ps/nm/km)	-55.4 @ 980 nm 0.2 @1550 nm
Core Diameter (µm)	4.5

* Values in this table are nominal or calculated values

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber

To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

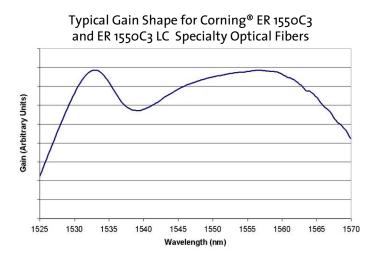
Corning Incorporated t + 1-607-974-9974 f +1-607-974-4122 specialtyfiber@corning.com

Corning[®] ER Specialty Optical Fibers Erbium-Doped Fibers

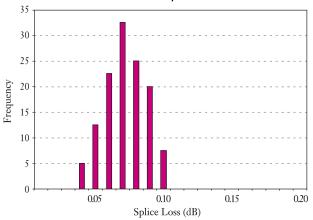
CORNING

Manufactured with Corning's patented Outside Vapor Deposition (OVD) process, Corning[®] ER Specialty Fibers set the world standard for uniformity and reliability. Corning offers Erbium-doped fibers with or without hermetic coating. The hermetic coating offers significant advantage with respect to mechanical reliability and resistance to hydrogen induced optical attenuation degradation. These Erbium-doped fibers have a proven track record in state-ofthe-art optical amplifiers, and exhibit consistently low splice loss when coupled with fibers such as Corning[®] HI 1060 FLEX, Corning[®] HI 980 and Corning[®] SMF-28e+[®] Optical Fiber. Erbium-doped fibers designs are available for conventional Cband, L-band and Reduced Clad $(80 \ \mu m)$ applications.

For use in Optical Amplifiers and Fiber Lasers


Applications:

- Single and multi-wavelength optical amplifiers (EDFA)
- Digital and analog systems
- CATV amplifiers


- Outstanding consistency and uniformity using Corning's patented Outside Vapor Deposition (OVD) process
- OVD manufacturing consistency provides repeatability for gain spectrum allowing for the reduction of lot qualifications in amplifier deployment
- Hermetic coating for increased environmental stability and reliability
- Dual acrylate coating system provides excellent protection from microbend-induced attenuation and superior mechanical robustness
- Short and long cutoff wavelength C-band versions available
- Excellent geometry control
- Mode-field diameter designed to match Corning[®] High Index Specialty Fiber, allowing for efficient coupling with an EDFA

	ER 1550C3	ER 1550C3 LC	RC ER 1550C3		
Key Optical Specifications for C-band Fibers					
Peak Absorption Range @ 1530 nm (dB/m)	5.0 to 10.0	5.0 to 10.0	5.0 to 10.0		
Peak Absorption Range @ 980 nm (dB/m)	≥ 2.5	≥ 3.0	≥ 2.5		
Variation Around Peak Absorption per Batch (%)	$\leq \pm 1$	$\leq \pm 1$	$\leq \pm 1$		
Maximum Attenuation @ 1200 nm (dB/km)	≤ 15.0	≤ 15.0	≤ 15.0		
Cutoff Wavelength (nm)	≤ 1300	≤ 980	≤ 1300		
Mode-field Diameter @ 1000 nm (μm)	3.5 ± 0.2	3.6 ± 0.2	3.5 ± 0.2		
Mode-field Diameter @ 1550 nm (µm)	5.4 ± 0.4	5.6 ± 0.4	5.4 ± 0.4		
Polarization Mode Dispersion (fs/m)	≤ 4	≤ 4	≤ 4		
Cladding Outside Diameter (µm)	125 ± 1	125 ± 1			
Key Geometric, Mechanical and Environn	•		80 ± 1		
Coating Outside Diameter (µm)	245 ± 10	245 ± 10	165 ± 10		
Core-to-Cladding Offset (µm)	≤ 0.4	≤ 0.4	≤ 0.4		
Proof Test (kpsi)		100			
Standard Lengths		100 m, 500 m, 1 km, 2 km, 5 km			
Operating Temperature (°C)	-60 to 85	-60 to 85	-60 to 85		
Performance Characterizations*					
Numerical Aperture	0.23	0.22	0.23		
Backscatter (% per meter)	≤0.0001	≤0.0001	≤0.0001		
* Values in this table are nominal or calculated values					
Typical Splicing Loss					

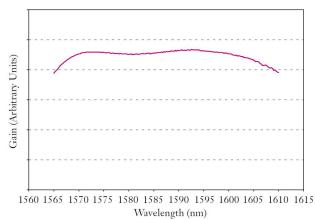
To SMF-28e+ [®] Optical Fiber (dB)	0.10	0.10	0.13
To Corning [®] HI 1060 FLEX Specialty Fiber (dB)	0.05	0.05	0.10
To Corning [®] HI 980 Specialty Fiber (dB)	0.10	0.10	0.10
To Corning [®] HI 1060 Specialty Fiber (dB)	0.10	0.10	0.10

Splice Loss of Corning[®] ER 1550C3 Specialty Fiber to SMF-28e+[®] Optical Fiber

	ER 1600L3	RC ER 1600L3
Key Optical Specifications for L-band Fibers		
Peak Absorption Range @ 1530 nm (dB/m)	18.0 to 29.0	
Variation Around Peak Absorption per Batch (%)	$\leq \pm 1$	
Maximum Attenuation @ 1200 nm (dB/km)	≤ 15.0	
Cutoff Wavelength (nm)	≤ 1400	
Mode-field Diameter @ 1550 nm (µm)	5.5 ± 0.3	
Polarization Mode Dispersion (fs/m)	≤ 5	

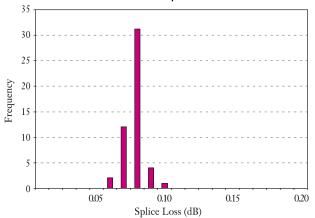
Key Geometric, Mechanical and Environmental Specifications

	-		
Cladding Outside Diameter (µm)	125 ± 1 80 ± 1		
Coating Outside Diameter (µm)	245 ± 10 165 ± 10		
Core-to-Cladding Offset (μm)	≤ 0.4		
Proof Test (kpsi)	100		
Standard Lengths	100 m, 500 m, 1 km, 2 km, 5 km		
Operating Temperature (°C)	-60 to 85		


Performance Characterizations*

Numerical Aperture	0.23
Backscatter (% per meter)	≤ 0.0002
Non-linear Index of Refraction (n ₂) (m ² /W)	$\leq 3.5 \text{ x } 10^{-20}$
Effective Area (A _{eff}) (µm²)	22.5 ± 2.5

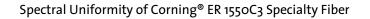
* Values in this table are nominal or calculated values

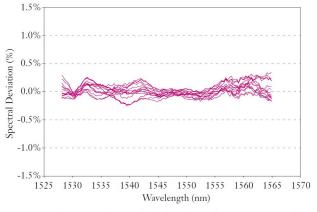

Typical Splicing Loss

To SMF-28e+ [®] Optical Fiber (dB)	0.10	0.10
To Corning [®] HI 980 Specialty Fiber (dB)	0.10	0.10
To Corning [®] HI 1060 Specialty Fiber (dB)	0.10	0.10

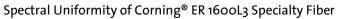
Typical Gain Shape for Corning[®] ER 1600L3 Specialty Fiber

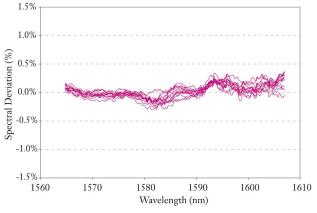
Splice Loss of Corning[®] ER 1600L3 Specialty Fiber to SMF-28e+[®] Optical Fiber




Corning's Outside Vapor Deposition Process

Corning's patented Outside Vapor Deposition (OVD) manufacturing process creates the most consistent fiber in the world. Producing 100 percent synthetic glass, the OVD process greatly reduces, if not eliminates, impurities that can affect fiber performance. It also provides greater degree of control and flexibility in fiber design. Corning is now using seventh generation outside vapor deposition technology, the most advanced in the world today.


Importance of Erbium-doped Fiber Uniformity


Perhaps the most critical parameter for Erbium-doped fiber in high performance amplifiers is the uniformity of the gain spectrum from one coil to the next. Because Corning produces fiber via the OVD process, it is by far the most uniform in the world. Individual starting core glass blanks are able to generate multiple fiber draw preforms of equivalent composition and profile, ensuring many hundreds of kilometers of fiber with equivalent properties. Other companies utilizing processes like MCVD require recipe replication for each draw preform, which imparts inherent variability. In fact, no other company can address customer requirements with the same level of experience, capacity and precision manufacturing as Corning. In typical high-performance amplifiers built with our Erbium-doped fiber, gain consistency is maximized due to spectral uniformity of the fiber, eliminating the need for frequent adjustments to gain flattening filter design. Variations in gain spectrum and pump power requirements are greatly reduced, which makes for a more predictable amplifier manufacturing process and translates directly to lower costs for customers.

Representative samples from multiple batches totaling more than 350 km.

Representative samples from multiple batches totaling more than 125 km.

Corning's ER Design Options

Corning's low cutoff design Type 3 C-band (ER 1550C3 LC), is specifically designed for EDFAs that do not use tight coiling. This fiber ensures single-mode attribute at 980 nm wavelength without coiling. Another benefit of the low cutoff C-band fiber is enhanced 980/1550 absorption ratio which can give enhanced pump power utilization and noise figure in specific EDFA designs. This product is compatible with other Erbium-doped fibers on the market. Corning's high cutoff C-band product (ER 1550C3), which can be coiled to maintain less than 980 nm cutoff, has an optimized profile for demonstrated performance improvements in efficiency as lower Erbium ion concentrations can be used to achieve similar signal band peak absorption (i.e. lower ion-ion interaction). The spectral characteristics of ER 1550C3 LC can be matched to ER 1550C3 while providing equivalent spectral uniformity performance. ER 1550C3 LC fiber offers customers a highly uniform OVD processed fiber alternative to established low cutoff designs, resulting in greater manufacturing control and procurement flexibility.

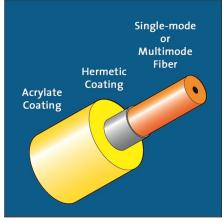
The Corning Advantage

All Erbium-doped fibers are not equal. Corning understands the each customer's amplifier design varies and their need for custom requirements and gain spectrums are paramount. By combining Corning's fundamental ER fiber processing and reliability features with our customer's unique design needs, Corning is leading the way in low cost EDFA designs. With the confidence of tens of thousands of kilometers experience, make Corning[®] Erbium-doped fiber your next choice, and feel the advantage.

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated Te

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com



Corning[®] Hermetic Single-mode and Multimode Specialty Optical Fibers

CORNING

Corning's Hermetic Single-mode and Multimode Fibers are designed for applications requiring *improved fatique resistance, high* useable strength and excellent resistance to hydrogen permeation into optical fibers. Corning's specially designed hermetic layer provides a protective barrier to help shield the glass from exposure to hydrogen, water, and corrosive chemicals while maintaining optical qualities comparable to standard fibers. The properties of the hermetic layer increase the *fatigue performance of the fiber* five times compared with non*hermetic fibers. Corning's hermetic* layer is a thin layer of amorphous carbon that is bonded to the glass surface of the optical fiber. The fiber is manufactured with *Corning's patented Outside Vapor* Deposition (OVD) process. The Hermetic Single-mode and Multimode Specialty Fibers offer high reliability and consistent performance for a variety of applications.

Applications:

- Hydrogen-rich environments
- Long distance undersea links
- Towed arrays
- Sensors
- Increased fatigue resistance for tight bend applications

- No hydrogen aging at room temperature to 85°C
- Low attenuation
- Outstanding consistency and uniformity using Corning's patented Outside Vapor Deposition (OVD) process
- Efficient coupling
- Dual acrylate coating system provides excellent protection from microbend-induced attenuation and superior mechanical robustness
- Fibers include:
 - Single-mode: optimized for 1310 nm and 1550 nm wavelengths
 - Multimode: optimized for 850 nm and 1300 nm wavelengths
 - Inquire for other glasses

SMFHA

MMFHA

Key Optical Specifications

Operating Wavelength (nm)	1310, 1550	850, 1300
Maximum Attenuation (dB/km)	0.4 @ 1310 nm 0.25 @ 1550 nm	2.5 @ 850 nm 0.7 @ 1300 nm
Cutoff Wavelength (nm)	≤ 1290	
Mode-field Diameter (µm)	9.2 ± 0.4 @ 1310 nm 10.4 ± 0.5 @ 1550 nm	
Bandwidth (MHz-km)		≥ 500

Key Geometric, Mechanical and Environmental Specifications		Hermetic + Dual layer UV-curable acrylate	
Cladding Outside Diameter (µm)	125 ± 0.7 125 ± 2.0		
Coating Outside Diameter (µm)	245 ± 10 245 ± 10		
Core-to-Cladding Offset (µm)	≤ 0.5 ≤ 1.5		
Core Diameter (µm)	8.2 (nominal) 50 ± 2.5		
Standard Lengths	500 m, 1 km, 2 km, 5 km, 10 km*		
Proof Test (kpsi)	200		
Operating Temperature (°C)	-60 to 85		

* 10 km lengths available for SMFHA only

Performance Characterizations*

Numerical Aperture	0.12	0.20
Refractive Index Difference (%)	0.36	1.0
Fatigue Resistance Parameter (n _d)	> 100	> 100
Effective Group Index of Refraction (N_{eff})	1.4675 @ 1310 nm 1.4681 @ 1550 nm	

* Values in this table are nominal or calculated values

Hydrogen Resistance (Single-mode only)

Test Condition	Results
21 Day Exposure to Hydrogen @ 11 ATM, 85°C	\leq 0.2 dB/km induced attenuation at 1240 nm

© 2010 Corning Incorporated

Note: Expected attenuation at 1310 nm and 1550 nm for 30 year life at 5 atmospheres Hydrogen and 10°C is ≤ 0.05 dB/km.

Corning offers fiber stripping and splicing support for Hermetically-coated fibers. Reference: White Paper "Corning's Hermetically Coated Erbium-doped Specialty Fibers" by Kohli and Glaesemann

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com

•

Single-mode and multimode optical fiber with mid-temperature acrylate-based coatings

Inquire for information about the application of mid-temperature coatings on glasses with optical properties that match your application or custom need.

Corning[®] Mid-Temperature Specialty Optical Fibers

Corning Specialty Fiber portfolio has expanded and now contains optical fiber coatings for operations up to 180 °C. While these coatings provide the ability to operate at elevated temperatures, they are also acrylatebased for ease of use and handling. When combined with Corning's extensive range of optical glass properties, the introduction of midtemperature coatings opens a new dimension for the uses of fiber optics. With the addition of Corning's distinctive hermetic layer, these midtemperature fibers offer improved hydrogen resistance and fatigue performance in mid-temperature ranges.

Applications:

- Fiber Sensing and Data Transmission for:
 - Aerospace and Defense
 - Medical
 - Structural Health Monitoring
 - Down-Hole Drilling

- Acrylate-base for ease of handling
- Rated for up to 180 °C
- Fully qualified at 165 °C
- Hermetic coating (optional) for protection against hydrogen induced attenuation increase and improved fatigue resistance
- Consistent strength over time at elevated temperatures
- Multimode fiber is made with a graded index refractive index profile for increased performance

	SMA-C	MM50A-C***
Key Optical Specifications		
Operating Wavelength (nm)	1310, 1550	850, 1060, 1300
Cutoff Wavelength (nm)	≤1290	n/a
Maximum Attenuation (dB/km)	0.38 @ 1310 nm	2.5 @ 850 nm
	0.24 @ 1550 nm	0.7 @ 1300 nm
Mode-field Diameter (μm)	9.2 ± 0.4 @ 1310 nm	n/a
	10.4 ± 0.5 @ 1550 nm	117 a
Bandwidth @ 850 nm and 1300 nm (MHz-km)	n/a	≥500 [#]

0.12 (nominal)

[#] Higher bandwidth MM fibers are available with the ClearCurve[®] Multimode mid-Temperature fibers (Mo300120)

Key Geometric, Mechanical and Environmental Specifications

Core Diameter (µm)	8.2 (nominal) 50 ± 2.5	
Cladding Outside Diameter (µm)	125 ± 1.0	
Coating Outside Diameter (µm)	245 ± 10	245 ± 10*
Core-to-Cladding Offset (µm)	≤ 0.5	≤1.5
Standard Lengths**	500 m, 1 km, 2 km, 5 km	
Proof Test (kpsi)	100	100
Operating Temperature (°C)	-60 to 150 or 180 ****	-60 to 150 or 180 ****
Coating	Mid-Temperature Acrylate Optional Hermetic Layer	Mid-Temperature Acrylate Optional Hermetic Layer

 * 200 \pm 10 μm also available for 150 °C only

Numerical Aperture

** Contact Corning Incorporated for longer lengths

**** MM50-MT and MM50H-MT contain graded index Refractive Index profile

*** 180 °C product also fully qualified at 165 °C

SMA-C or MM50A-C

Single-Mode or Multimode Optical Fiber with:

	Category	Definition	Product Code
Α	Hermetic Indicator	Non Hermetic Hermetic	(blank) H
С	Mid-temperature Acrylate Coating Type	150 °C 180 °C	MT XMT

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber

To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

t +1-607-974-9974 f +1-607-974-4122 e specialtyfiber@corning.com © 2012 Corning Incorporated

 0.20 ± 0.015

Corning[®] ClearCurve[®] Single-Mode Mid-Temperature Specialty Optical Fibers for Harsh Environments

Single-mode bend insensitive optical fiber with midtemperature acrylate-based coatings

Inquire for information about the application of mid-temperature coatings on glasses with optical properties that match your application or custom need. The Corning[®] ClearCurve[®] Single-mode bend insensitive family of fibers now includes higher temperature capability. For use at temperatures up to 180 °C and beyond, these acrylate-based fibers deliver the best macro bend performance in the industry with ease of use and handling; benefiting sensing systems operating in harsh environments.

Applications:

- Fiber Sensing and Data Transmission with tight bend requirements for:
 - Aerospace and Defense
 - Medical
 - Structural Health Monitoring
 - Down-Hole Drilling

- Acrylate-base for ease of handling
- Rated for up to 180 °C
- Fully qualified at 165 °C
- Test data available for 150 °C 200 °C temperature range
- Hermetic coating (optional) for protection against hydrogen induced attenuation increase and improved fatigue resistance
- Consistent strength over time at elevated temperatures
- A set of fibers designed to meet your specific needs with recommended minimum bending radii of 5 mm, 7.5 mm and 10 mm
- Exceeding the stringent bend performance requirements of ITU-Recommendations G.657.B3, G657.A2/B2, G657.A1 respectively
- Fully compliant with ITU-Recommendations G652.D
- Compatible with Corning[®] SMF-28e[®] and SMF-28e+[®] fibers

	SMBIA-5-C	SMBIA-7.5-C	SMBIA-10-C
Key Optical Specifications			
Operating Wavelength (nm)	1310, 1550	1310, 1550	1310, 1550
Cable Cutoff Wavelength (nm)	≤ 1260	≤1260	≤1260
Maximum Attenuation (dB/km)			
@ 1310 nm	0.38	0.38	0.38
@ 1550 nm	0.24	0.24	0.24
Mode-field Diameter (µm)			
@ 1310 nm	8.6 ± 0.4	8.6 ± 0.4	8.6 ± 0.4
@ 1550 nm	9.65 ± 0.5	9.6 ± 0.5	9.8 ± 0.5

Key Geometric, Mechanical and Environmental Specifications

Cladding Outside Diameter (µm)	125 ± 1.0		
Coating Outside Diameter (µm)	245 ± 10*		
Core-to-Cladding Offset (µm)	≤ 0.5		
Standard Lengths	500 m, 1 km, 2 km, 5 km		
Proof Test (kpsi)	100		
Operating Temperature (°C)	-60 to 150 or 180**		
Coating	Mid-Temperature Acrylate		
	Optional Hermetic Layer		

 * 200 \pm 10 μm also available for 150 °C only

** 180 °C product also fully qualified at 165 °C

Performance Characteristics (values in this table are nominal or calculated)

Numerical Aperture	0.12	0.12	0.12
Bend Loss (X mm radius; 1 turn) (dB/turn)			
@ 1550 nm	≤ 0.10	≤ 0.40	≤0.50
@ 1625 nm	≤0.30	\leq 0.80	≤1.50
Recommended Minimum Bending Radius (mm)	5	7.5	10

SMBIA-B-C

Single-Mode Bend Insensitive Optical Fiber with:

	Category	Definition	Product Code
Α	Hermetic Indicator	Non Hermetic Hermetic	(blank) H
В	Minimum Bend Radius (mm)	5 7.5 10	5 7.5 10
С	Mid-temperature Acrylate Coating Type	150 °C 180 °C	MT XMT

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber

To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

t +1-607-974-9974

f +1-607-974-4122

e specialtyfiber@corning.com

© 2012 Corning Incorporated

M0300052 Issued: February 2013 Supersedes: September 2112

Multimode bend insensitive optical fiber with midtemperature acrylate-based coatings

Inquire for information about the application of mid-temperature coatings on glasses with optical properties that match your application or custom need.

NEW!

Corning[®] ClearCurve[®] Multimode Mid-Temperature Specialty Optical Fibers for Harsh Environments

The Corning[®] ClearCurve[®] Multimode bend insensitive fiber now includes even higher temperature and higher bandwidth capability. For use at temperatures up to 180 °C and beyond, this acrylate-based fiber delivers incredible macro bend performance with ease of use and handling; benefiting sensing systems operating in harsh environments.

Applications:

- Fiber Sensing and Data Transmission with tight bend and/or high bandwidth requirements for:
 - Aerospace and Defense
 - Structural Health Monitoring
 - Down-Hole Drilling

- Acrylate-base for ease of handling
- Rated for up to 180 °C (fully qualified at 165 °C)
- Test data available for 150 °C 200 °C temperature range
- Available OM2 / OM3 / OM4 bandwidths
- Hermetic coating (optional) for protection against hydrogen induced attenuation increase and improved fatigue resistance
- Consistent strength over time at elevated temperatures
- A fiber designed to meet your specific needs with recommended minimum bending radius of 7.5 mm
- Fully compliant with ITU-Recommendations G651.1, and compatible with current optical fibers and practices

MM50BIA-B-C

Key Optical Specifications

Operating Wavelength (nm)	850, 1060, 1300
Cable Cutoff Wavelength (nm)	N/A
Maximum Attenuation (dB/km)	
@ 850 nm	2.5
@ 1300 nm	0.7
Numerical Aperture	0.20 ± 0.015
Bandwidth (MHz-km)	See table below
@ 850 nm @ 1300 nm Numerical Aperture	0.7 0.20±0.015

	MHz-Km	OM2	ОМЗ	OM4
High Performance EMB	850 nm	950	2000	4700
Legacy Performance OFL	850 nm	700	1500	3500
	1300 nm	500	500	500

Key Geometric, Mechanical and Environmental Specifications

Core Diameter (µm)	50 ± 2.5		
Cladding Outside Diameter (µm)	125 ± 2.0		
Coating Outside Diameter (µm)	245 ± 10*		
Core-to-Cladding Offset (µm)	≤1.5		
Standard Lengths	500 m, 1 km, 2 km, 5 km		
Proof Test (kpsi)	100		
Operating Temperature (°C)	-60 to 150 or 180**		
Coating	Mid-Temperature Acrylate		
	Optional Hermetic Layer		
* 200 ± 10 μm also available for 150 °C only			

** 180 °C product also fully qualified at 165 °C

Performance Characteristics (values in this table are nominal or calculated)

Refractive Index Profile	Graded Index	
Bend Loss (7.5 mm radius; 2 turns) (total induced attenuation)		
@ 850 nm	≤ 0.2	
@ 1300 nm	≤0.50	
Recommended Minimum Bending Radius (mm)	7.5	

MM50BIA-B-C

Multimode Bend Insensitive Optical Fiber with:

	Category	Definition	Product Code
Α	Hermetic Indicator	Non Hermetic Hermetic	(blank) н
В	Bandwidth	OM2 OM3 OM4	OM2 OM3 OM4
С	Mid-temperature Acrylate Coating Type	150 °C 180 °C	MT XMT

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber

To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

t +1-607-974-9974 f +1-607-974-4122 e specialtyfiber@corning.com

NEW!

Corning[®] ClearCurve[®] Multimode Mid-Temperature Specialty Optical Fibers for Short Distance Networks

Multimode Specialty Optical Fiber for Short Distance Networks

Inquire for information about the application of mid-temperature coatings on glasses with optical properties that match your application or custom need. Corning[®] ClearCurve[®] Multimode Specialty Optical Fiber for short distance networks is the newest addition to the Corning Specialty Fiber family. This fiber utilizes Corning[®] ClearCurve[®] technology to create a perfect fiber for industrial applications that contain tight bends and a need for align-able fibers that withstand elevated temperatures.

Applications:

- Aerospace and Defense
- Automotive
- Avionics
- Distributed Fiber Sensors

- Low bend loss for applications that require tight bending
- Relaxed packaging alignment tolerances through high numerical aperture (0.29 NA) and a large core size of 80 μm
- Optimized for use with VCSEL technology
- Rated for use up to 180 °C
- Acrylate based coating for ease of handling
- Multimode fiber is made with a graded index refractive index profile for increased performance
- Hermetic coating (optional) for protection against hydrogen induced attenuation increase and improved fatigue resistance

MM8oBIA-C

Key Optical Specifications

Operating Wavelength (nm)	850
Maximum Attenuation (dB/km)	≤ 3.5 @ 850 nm
Numerical Aperture	0.29 ± 0.015
Bandwidth (MHz/km)	≥300

Key Geometric, Mechanical and Environmental Specifications

Core Diameter (µm)	80 ± 4.0	
Cladding Outside Diameter (µm)	125 ± 2.0	
Coating Outside Diameter (μm)	200 [*] ± 10 or 245 ± 10	
Core-to-Cladding Offset (μm)	≤1.5	
Proof Test (kpsi)	100	
Operating Temperature (°C)	-60 to 150 or 180	
Coating	Mid-Temperature Acrylate	
	Optional Hermetic Layer	

* Available for 150° C only

Performance Characteristics (values in this table are nominal or calculated)

MacroBend Loss @ 850 nm (5 mm radius; 1 turn)	
Typical induced attenuation ¹ (dB)	≤0.1
Typical induced attenuation ² (dB)	≤0.2

1 Measured using 50 μm encircled flux launch, representative of typical consumer grade VCSEL transceiver launch condition.

2 Measured using 62.5 µm encircled flux launch, representative of worst case consumer grade VCSEL transceiver launch condition.

MM8oBIA-C

Multimode 80 μ m Bend insensitive Optical Fiber with:

	Category	Definition	Product Code
Α	Hermetic Indicator	Non-Hermetic Hermetic	(blank) H
С	Mid-temperature Acrylate Coating Type	150 °C 180 °C	MT XMT

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

t +1-607-974-9974 f +1-607-974-4122 e specialtyfiber@corning.com

Corning[®] RC SMF Specialty Optical Fiber

CORNING

Manufactured with Corning's patented Outside Vapor Deposition (OVD) process, and based on decades of experience in specialty fiber development, Corning[®] RC SMF Specialty Fiber sets the industry standard for consistent geometric properties, high mechanical reliability and efficient splicing.

Low loss fused components for EDFA and small bend radius applications

Applications:

- Low-loss miniature fused devices for C-band and L-band
- Ultra-compact components requiring small bend radii
- · Pigtails in bend insensitive applications
- Sensors

- Outstanding consistency and uniformity using Corning's patented Outside Vapor Deposition (OVD) process
- Dual acrylate coating system provides excellent protection from microbend-induced attenuation and superior mechanical robustness
- Ultra-tight specifications
- · World-class reliability support for handling and deployment
- Technical support for splicing to 125 µm products
- Ultra-low splice loss to SMF-28e+®
- 80 µm diameter for miniature packaging
- Low bending loss
- Excellent geometry control

RC SMF

Key Optical Specifications

Operating Wavelength (nm)	> 1300
Maximum Attenuation @ 1310 nm (dB/km)	0.7
Maximum Attenuation @ 1550 nm (dB/km)	0.5
Cutoff Wavelength (nm)	≤ 1290
Coiled Cutoff at 80 mm Diameter (nm)	1210 ± 60
Coiled Cutoff at 32 mm Diameter (nm)	1140 ± 60
Mode-field Diameter @ 1310 nm (μm)	9.2 ± 0.3
Mode-field Diameter @ 1550 nm (μm)	10.4 ± 0.8

Key Geometric, Mechanical and Environmental Specifications

Cladding Outside Diameter (µm)	80 ± 1	
Coating Outside Diameter (μm)	165 ± 10	
Core-to-Cladding Offset (μm)	≤ 0.5	
Standard Lengths	500 m, 1 km, 2 km, 5 km, 10 km	
Proof Test (kpsi)	100 or 200	
Operating Temperature (°C)	-60 to 85	

Performance Characterizations*

Nominal Delta (%)	0.36
Numerical Aperture	0.12
Bend Loss (20 mm O.D.; 1550 nm) (dB/turn)	≤ 0.1
Core Diameter (μm)	8.0

* Values in this table are nominal or calculated values

Typical Splice Loss

	SMF-28e+ [®] Fiber	RC HI 1060	RC PANDA PM 1550	RC HI 1060 FLEX	RC HI 980
Wavelength (nm)	1550	1550	1550	1550	980
RC SMF Fiber (dB)	0.05	0.08	0.09	0.12	0.11

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: <u>specialtyfiber@corning.com</u>

Corning[®] RGB 400 Specialty Optical Fiber

CORNING

Corning RGB 400 Specialty *Fiber is a single-mode fiber* that is optimized for visible operating wavelength applications. The fiber's short cut-off wavelength design enables single-mode operation in the visible wavelength range. Outside Vapor Deposition (OVD) processing is used to fabricate this fiber, providing consistent geometric properties and high strength. In addition to exceptional performance as a single-mode visible fiber, the design is also optimized to produce low loss fused biconic tapered couplers.

Optimized for visible light spectral range applications

Applications:

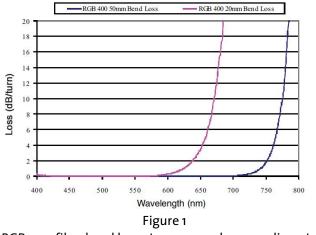
- Blue lasers
- Sensors
- Photolithography
- Red-Green-Blue components
- Couplers
- Diode pigtails
- High resolution display

- Outstanding consistency and uniformity using Corning's patented Outside Vapor Deposition (OVD) process
- Dual acrylate coating system provides excellent protection from microbend-induced attenuation and superior mechanical robustness
- Profile optimized for adiabatic taper loss
- Excellent geometry control
- High reliability

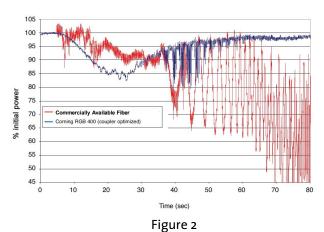
RGB 400

Key Optical Specifications

Operating Wavelength (nm)	450 - 700
Fiber Cutoff Wavelength (nm)	400 ± 50
Maximum Attenuation @ 500 nm (dB/km)	≤ 30
Maximum Attenuation @ 600 nm (dB/km)	≤ 20
Mode-field Diameter @ 500 nm* (µm)	3.2 ± 0.5
Mode-field Diameter @ 600 nm* (µm)	3.9 ± 0.5


Key Geometric, Mechanical and Environmental Specifications

Cladding Outside Diameter (µm)	125 ± 0.5
Coating Outside Diameter (µm)	245 ± 10
Core-to-Cladding Offset (µm)	≤ 0.3
Standard Lengths	500 m, 1 km, 2 km, 5 km
Proof Test (kpsi)	100 or 200
Operating Temperature (°C)	-60 to 85


Performance Characterizations*

Numerical Aperture	0.12
Index of Refraction	1.46
Core Diameter (µm)	4.0

* Values in this table are nominal or calculated values

RGB 400 fiber bend loss at 20 mm and 50 mm diameters

Single fiber taper loss pulls for RGB 400 and standard single-mode low wavelength fiber at 532 nm

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com

NEW! Corning[®] ClearCurve[®] Photonic Specialty Optical Fibers

Bendable, spliceable, reliable and coupler optimized

Satisfying the need of Photonic component manufacturers for a single fiber optimized to provide low bend loss, tight geometrical control, high mechanical reliability and good coupler performance. Specially designed to meet the growing demands for smaller footprints, Corning Introduces the NEW ClearCurve® Photonic Specialty Optical Fiber. This fiber was designed using Corning's patented ClearCurve® technology to give ultra-low bend loss performance. Created with tighter geometrical and mechanical specifications, this fiber enables consistent, reliable and low loss splicing. ClearCurve® Photonic Fiber was developed with an optical profile ideal for making couplers.

Corning[®] ClearCurve[®] Photonic Specialty Optical Fiber is optimized for use in Photonic Components, paving the way for you to reliably and consistently enable information to go faster, further and "smarter" in a smaller space.

Applications:

- Designed specifically for photonic components in small package sizes
- Very tight bend requirements

- 10 mm bend radius
- Low bend loss
- Tighter geometrical control
- High reliability enhanced by 200 kpsi
- FBT coupler friendly

ClearCurve® Photonic

Key Optical Specifications

Operating Wavelength (nm)	1550
Cutoff Wavelength (nm)	≤1 4 50
Maximum Attenuation (dB/km)	0.3 @ 1550 nm
Mode-field Diameter (µm)	9.65 ± 0.5 @ 1550 nm

Key Geometric, Mechanical and Environmental Specifications

Cladding Outside Diameter (µm)	125 ± 0.5		
Coating Outside Diameter (µm)	245 ± 10		
Core-to-Cladding Concentricity (µm)	≤0.3		
Standard Lengths	500 m, 1 km, 2 km, 5 km, 10 km		
Proof Test (kpsi)	200		
Operating Temperature (°C)	-60 to 85		
Conting	Dual Coat Acrylate		
Coating	(Optional Hermetic Layer)		
Recommended Minimum Bending Radius (mm)	10		

Performance Characteristics (values in this table are nominal or calculated)

Nominal Delta/Profile (%)	0.51
Numerical Aperture	0.15
Refractive Index Value – Core	1.464 @ 651 nm
Dispersion (ps/nm/km)	18.2 @ 1550 nm
Bend Loss (@ 20 mm OD) (dB/m)	0.4 @ 1550 nm
	1.0 @ 1625 nm
Core Diameter (µm)	9.4

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber

To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

- t +1-607-974-9974 f +1-607-974-4122
- e specialtyfiber@corning.com

Corning[®] SMF-28e+[®] Photonic Optical Fiber

CORNING

Corning's SMF28e+[®] photonic fiber provides further evidence of Corning's long history of service to original equipment manufacturers (OEMs). This fiber's attributes are specifically customized for optical connectorization and component applications, allowing **OEMs to reduce** manufacturing costs, standardize processes, and improve performance.

A full spectrum fiber for components and assemblies with tighter geometry for more consistent splicing

Applications:

- Connectors
- EDFA
- Couplers
- Pigtails
- DWDM components
- Other components

- · Industry-leading optical and geometry specifications
- Exceptional performance and splice-ability
- Suitable for all transmission systems and fully compatible with SMF-28e+[®] optical fiber, the world's most widely demanded full-spectrum fiber
- In compliance with, or exceeds the industry's most stringent requirements including:
 - ITU-T Recommendations G.652 (Tables A, B, C & D)
 - IEC Specifications 60793-2-50 Type B1.3
 - TIA/EIA 492-CAAB
 - Telcordia Generic Requirements GR-20-Core
 - ISO 11801 OS2
- Improved macro-bend specification from less than 0.05 dB to less than 0.03 dB, allowing better handling and ease of installation
- Tighter zero dispersion wavelength specification
- New coating for improved micro-bending
- $\bullet\,$ Smaller coating outside diameter (242 μm nominal) for improved usage in ribbon applications

SMF-28e+[®] Photonic

Optical Specifications

Fiber Cutoff Wavelength (λ_{cf})	≤ 1305 nm	
	Wavelength (nm)	Maximum Value* (dB/km)
	1310	≤ 0.35
	$1383 \pm 3^{**}$	≤ 0.35
Maximum Attenuation	1490	\leq 0.24
	1550	≤ 0.20
	1625	≤ 0.23

* Maximum specified attenuation value available within the stated ranges

** Attenuation post-hydrogen aging according to IEC 60793-2-50 Section C.5 for B.1.3 fibers.

Mode-field Diameter	Wavelength (nm) 1310 1550	MFD (μ m) 9.2 ± 0.4 10.4 ± 0.5
Dispersion	Wavelength (nm) 1550 1625	Dispersion Value [ps/(nm·km)] ≤ 18.0 ≤ 22.0
Zero Dispersion Wavelength (λ_0): 1304 nm $\leq \lambda_0$ 1324 nm Zero Dispersion Slope (So): $\leq 0.088 \text{ ps/(nm}^2 \text{ km})$		
Polarization Mode Dispersion (PMD) PMD Link Design Value	Value (ps/ \sqrt{km}) $\leq 0.06*$ ≤ 0.1	
Maximum Individual Fiber	$\leq 0.$	1
Maximum Individual Fiber * Complies with IEC 60794-3: 2001, Section 5.5, Method 1, September 2 The PMD link design is a term used to describe the PMD of concatenated PMD values may change when fiber is cabled. Corning's fiber specificati	2001 lengths of fiber (also known as PMD_0). This value represen	ts a statistical upper limit for total PMD. Individual

SMF-28e+[®] Photonic

Key Geometric, Mechanical and Environmental Specifications

Cladding Diameter (µm)	125.0 ± 0.3
Core-Clad Concentricity (µm)	≤ 0.3
Cladding Non-Circularity (%)	≤ 0.7
Core Diameter (µm)	8.2
Coating Diameter (µm)	242 ± 5
Coating-Cladding Concentricity (µm)	< 12
Coloring Diameter* (µm)	250 +15/-9
Fiber Curl (m)	\geq 5.0 radius of curvature

* If applicable

Environmental Test	Test Condition	Induced Attenuation 1310 nm, 1550 nm & 1625 (dB/km)				
Temperature Dependence (°C)	-60 to 85 *	≤ 0.05				
Temperature-Humidity Cycling (°C)	-10 to 85 * up to 98% RH	≤ 0.05				
Water Immersion (°C)	23 * ± 2	≤ 0.05				
Dry Heat Soak (°C)	85 * ± 2	≤ 0.05				
Damp Heat (°C)	85 * at 85% RH	≤ 0.05				
Operating Temperature Range (°C)	-60 to	o 85				
Proof Test (kpsi)	≥ 200					
Lengths	Available up to 50).4 km per spool				

* Reference temperature: 23°C

Performance Characterizations*

Numerical Aperture		0.12				
Refractive Index Difference	(%)	0.36				
Effective Group Index of Ref	raction (N _{eff})	1.4670 @ 1310 nm 1.4677 @ 1550 nm				
Fatigue Resistance Paramete	er (N _d)	20				
Coating Strip Force		Dry: 0.6 lb. (3N) Wet 14 day room temperature: 0.6 lb. (3N)				
Rayleigh Backscatter Coeffic	ient	-77 dB @ 1310 nm -82 dB @1550 nm				
Macrobend Loss						
Mandrel Diameter (mm)	Number of Turns	Wavelength	Induced Attenuation** (dB)			
32	1	1550	≤ 0.03			
50	100	1310	≤ 0.03			
50	100	$1550 \leq 0.03$				
60	100	1625	≤ 0.03			

* Values in this table are nominal or calculated values

** The induced attenuation due to fiber wrapped around a mandrel of a specified diameter.

The Single-Mode Fiber for Connectors and Components

Corning uses its legendary geometry control and quality leadership to manufacture SMF-28e+[®] photonic fiber. We focus on tailoring product attributes that allow OEMs to minimize scrap and overall insertion loss while improving active and splice performance. Through precise manufacturing techniques, we assure geometric performance along the entire length of fiber while maintaining nominal mode-field performance.

We proof stress the entire length of SMF-28e+^{\circ} photonic fiber to \geq 200 kpsi, which provides OEMs with increased reliability and reduced handling concerns. In addition, we specify a fiber cutoff wavelength of 1280 nm, enabling operability at both 1310 nm and 1550 nm in bare fiber applications.

Designed for Versatility and Performance

For better understanding of the applicable value to customers, Corning has completed studies using active and passive alignment techniques as well as modeled results. This research shows that significant splice performance improvement can result from focusing on nominal geometry performance and reducing deviation of a fiber's core-clad concentricity, cladding diameter, cladding non-circularity and fiber curl. This improvement minimizes high-loss outliers and reduces the average splice loss, contributing to maximized OEM process efficiencies.

Corning manufactures the family of SMF-28e+[®] fibers using an Outside Vapor Deposition (OVD) process, which produces a totally synthetic, ultra-pure fiber. As a result, Corning fibers have consistent geometric properties, high strength, and low attenuation. OEMs can count on Corning SMF-28e+[®] photonic fiber to deliver excellent performance and reliability, reel after reel. Measurement methods comply with ITU recommendations G650, IEC 60793-1, and Telcordia GR20-CORE.

Formulas

Dispersion:

$$D(\lambda) \approx \frac{S_0}{4} \left[\lambda - \frac{\lambda_0^4}{\lambda^3} \right] ps/(nm \cdot km)$$

For 1200 nm $\leq \lambda \leq 1625$ nm

Cladding Non Circularity:

$$\frac{Cladding}{Non - Cladding} = \left[1 - \frac{MinCladdingDiameter}{MaxCladdingDiameter}\right] x100$$

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com © 2010 Corning Incorporated

Corning[®] ClearCurve[®] XB Specialty Optical Fiber

CORNING

Corning's ClearCurve[®] XB fiber is a full-spectrum optical fiber with improved *macro-bend performance* compared to legacy singlemode fibers. Products of all types are constantly decreasing their size and becoming more complex. Having the ability to place fibers in increasingly smaller footprints without performance degradation is crucial to keeping the optical loss budgets low. The contribution by bend loss to the overall loss budget increases as the amount of fiber that is deployed in the bent state increases. Having a fiber that is designed for low bend loss makes these new smaller products a reality.

Reduced footprint components and bend sensitive applications

Applications:

- Bend sensitive applications
- Footprint reduction
- Small size and integrated EDFA's
- Couplers
- Pigtails/patchcords

- Low bend loss design
- Fully compatible with legacy fibers
- Ease of handling and splice ability of standard single mode fibers
- Economical bend loss performance
- Optical attenuation that is flat across the C & L-Bands
- 200 kpsi proof test for higher mechanical reliability in small bend scenarios
- Fully compliant with the following standards:
 - ITU-T G.652.D
 - ITU-T G.657.A1

ClearCurve[®] XB Specialty Optical Fiber

Optical Specifications

Cable Cutoff Wavelength (λ_{cf}) (nm)	.≤	1260
	Wavelength (nm)	Maximum Value* (dB/km)
Maximum Attenuation	1310 1550	0.33 - 0.35 0.19 - 0.20
	1625	0.20 - 0.23

* Maximum specified attenuation value available within the stated ranges

** Attenuation post-hydrogen aging according to IEC 60793-2-50 Section C.5 for B.1.3 fibers.

Mode-field Diameter	Wavelength (nm) 1310 1550	MFD (μ m) 8.6 ± 0.4 9.8 ± 0.5
$\label{eq:Dispersion} \begin{split} & \text{Zero Dispersion Wavelength } (\lambda_0): 1304 \text{ nm} \leq \lambda_0 1324 \text{ nm} \\ & \text{Zero Dispersion Slope } (\text{So}): \leq 0.089 \text{ps}/(\text{nm}^2 \text{km}) \end{split}$	Wavelength (nm)Dispersion Value [ps/(nr1550 ≤ 18.0 1625 ≤ 22.0	
Polarization Mode Dispersion (PMD) Maximum Individual Fiber		(ps/√km) ≤ 0.1
Point Discontinuity	Wavelength (nm) 1310 1550	Point Discontinuity (dB) ≤ 0.05 ≤ 0.05

Key Geometric, Mechanical and Environmental Specifications

Cladding Diameter (µm)	125.0 ± 0.7
Core-Clad Concentricity (µm)	≤ 0.5
Cladding Non-Circularity (%)	≤ 0.7
Coating Diameter (µm)	242 ± 5
Coating-Cladding Concentricity (µm)	< 12
Coloring Diameter* (µm)	250 +15/-9
Fiber Curl (m)	\geq 4.0 radius of curvature

* If applicable

Environmental Test	Test Condition	Induced Attenuation 1310 nm, 1550 nm & 1625 (dB/km)				
Temperature Dependence (°C)	-60 to 85 *	≤ 0.05				
Temperature-Humidity Cycling (°C)	-10 to 85 * up to 98% RH	≤ 0.05				
Water Immersion (°C)	23 * ± 2	≤ 0.05				
Dry Heat Soak (°C)	85 * ± 2	≤ 0.05				
Damp Heat (°C)	85 * at 85% RH	≤ 0.05				
Operating Temperature Range (°C)	-60 to	85				
Proof Test (kpsi)	≥ 200					
Lengths	Available up to 50	.4 km per spool				

* Reference temperature: 23°C

ClearCurve[®] XB Specialty Optical Fiber

Performance Characterizations*

Index of Refraction (Core)		1.45	
Numerical Aperture		0.13	
Macrobend Loss			
Mandrel Diameter (mm)	Number of Turns	Wavelength (nm)	Induced Attenuation** (dB)
20	1	1625	1.5
20	1	1550	0.5

* Values in this table are nominal or calculated values

** The induced attenuation due to fiber wrapped around a mandrel of a specified diameter.

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com © 2010 Corning Incorporated

PANDA PM Specialty Optical Fibers

CORNING

PANDA PM Specialty Fibers are designed with the best polarization maintaining properties, and are the industry standard in the world today. The fibers offer low attenuation and excellent birefringence for high performance applications. Available in a wide range of standard operating wavelengths up to 1550 nm, and with a variety of coating designs, PANDA PM Specialty Fibers are optimal for high performance polarization retaining fiber applications. This field-proven fiber supports high growth applications, and performs well over a wide temperature range.

High Performance Polarization Maintaining Fibers

Applications:

- High performance transmission laser pigtails
- Polarization-based modulators
- High data rate communications systems
- Polarization-sensitive components
- Raman amplifiers
- Fiber optic sensors, gyroscopes and instrumentation

- Extremely high birefringence
- Excellent polarization maintaining properties
- Low attenuation
- Single-mode designs from 400 nm 1550 nm
- Dual-layer UV acrylate and 900 μm polyester-elastomer coatings available
- · Low sensitivity to bending-induced attenuation
- Low splice loss
- PANDA PM Fibers available:
 - High Numerical Aperture
 - Reduced claddings
 - Low birefringence
 - Erbium-doped
 - Dispersion shifted
 - Polyimide and flame retardant coatings are also available

PANDA PM Specialty Fibers

	PM 1550	PM14XX	PM 1300	PM 980	PM 850	PM 630	PM 480	PM 400	
Key Optical Specifications							For all coatings		
Wavelength (nm)	1550	1400-1490	1300	980	850	630	480	410	
Mode-field Diameter (µm)	10.5 ± 0.5	9.8 ± 0.5	9.0 ± 0.5	6.6 ± 0.5	5.5 ± 0.5	4.5 ± 0.5	4.0 ± 0.5	3.5 ± 0.5	
Beat Length Range (mm)	3.0-5.0	2.8-4.7	2.5-4.0	1.5-2.7	1.0-2.0	≤ 2.0	≤ 2.0	≤ 1.7	
Maximum Cross Talk at 100 m (dB)	-30	-30	-30	-30	-30	-30	-30	-30*	
Typical Cross Talk at 4 m (dB)	-40	-40	-40	-40	-40	-40	-40	-40	
Cutoff Wavelength (nm)	1300-1440	1260-1380	1130-1270	870-950	650-800	520-620	400-470	330-400	
Maximum Attenuation (dB/km)	0.5	1.0	1.0	2.5	3.0	12	30	≤ 50	

* PM 400 Cross Talk is \leq -30dB/100 m at 410 nm and 480 nm measurement wavelengths

Key Geometric, Mechanical and Environmental Specifications (-U25D)					UV/U	V Acrylate		
Part Number	PM 15-U25D	PM 14-U25D	PM 13-U25D	PM 98-U25D	PM 85-U25D	PM 63-U25D	PM48-U25D	PM40-U25D
Core-to-Cladding Offset (µm)		≤ 0.5						
Coating Outer Diameter (µm)		245 ± 15						
Cladding Outer Diameter (µm)		125 ± 1						
Standard Lengths*		100 m, 200 m, 300 m, 400 m, 500 m, 1 km						
Proof Test (kpsi)		100 (200 optional)						
Operating Temperature (°C)				-40 1	to 85			

Key Geometric, Mechanical and Environmental Specifications (-U40D)						UV/U	V Acrylate	
Part Number	PM 15-U40D	PM 14-U40D	PM 13-U40D	PM 98-U40D	PM 85-U40D	PM 63-U40D	PM 48-U40D	PM40-U40D
Core-to-Cladding Offset (µm)		≤ 0.5						
Coating Outer Diameter (µm)		400 ± 15						
Cladding Outer Diameter (µm)		125 ± 1						
Standard Lengths*			100 m,	200 m, 300 m	, 400 m, 500 n	n, 1 km		
Proof Test (kpsi)		100 (200 optional)						
Operating Temperature (°C)				-40 t	to 85			

Key Geometric, Mechanical and Environmental Specifications (-H90D)						Polyester-	Elastomer	
Part Number	PM 15-H90D	PM14-H90D	PM13-H90D	PM98-H90D	PM 85-H90D	PM63-H90D	PM48-H90D	PM40-H90D
Core-to-Cladding Offset (µm)		≤ 0.5						
Coating Outer Diameter (µm)		900 ± 100						
Cladding Outer Diameter (µm)		125 ± 1						
Standard Lengths*			100 m,	200 m, 300 m	, 400 m, 500 n	n, 1 km		
Proof Test (kpsi)		100 (200 optional)						
Operating Temperature (°C)				-40 1	to 85			

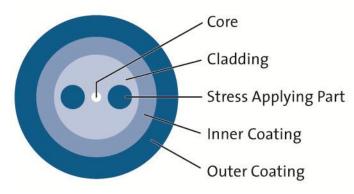
* For longer lengths contact Corning

RC PANDA PM Specialty Fibers

	RC PM 1550	RC PM14XX	RC PM 1300	RC PM 980
Key Optical Specifications				
Wavelength (nm)	1550	1400-1490	1300	980
Mode-field Diameter (µm)	9.5 ± 0.5	9.0 ± 0.5	8.2 ± 0.5	6.0 ± 0.5
Beat Length Range (mm)	2.5 - 4.5	2.3 - 4.2	2.0 - 3.5	1.4 - 2.6
Cutoff Wavelength (nm)	1290-1450	1200 - 1380	1100 - 1290	870 - 950
Maximum Attenuation (dB/km)	≤ 2.0	≤ 2.0	\leq 2.0	≤ 2.5
Maximum Cross Talk at 100 m (dB)			25	
Typical Cross Talk at 4 m (dB)			40	

Key Geometric, Mechanical and E	UV/UV Acrylate					
Part Number	RCPM 15	RCPM 98				
Core-to-Cladding Offset (µm)	≤ 0.5					
Coating Outer Diameter (µm)	165 ± 10					
Cladding Outer Diameter (µm)	80 ± 1					
Standard Lengths	100 m, 200 m, 300 m, 400 m, 500 m					
Proof Test (kpsi)	100 (200 optional)					
Operating Temperature (°C)	-40 to 85					

Performance Characteristics*


Numerical Aperture	0.09	0.09	0.09	0.10
NumenearApertare	0.07	0.07	0.09	0.10

* Values in this table are nominal or calculated values

Typical Splice Loss

	RC SMF Fiber	SMF-28e+ [•] Fiber	RC HI 1060
Wavelength (nm)	1550	1550	1550
RC PANDA PM 980 (dB)	0.25	0.25	0.07
RC PANDA PM 1550 (dB)	0.09	0.10	N/A

Typical Cross-sectional View of PANDA PM Specialty Optical Fiber

PANDA PM Specialty Optical Fiber design uses two stress applying parts to create an extremely high birefringence, resulting in fiber with excellent polarization maintaining properties. This design was invented and patented by Corning Incorporated. Corning continues to have a manufacturing partnership with Fujikura Ltd.

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com © 2010 Corning Incorporated

PANDA PM Flame Retardant Specialty Optical Fibers

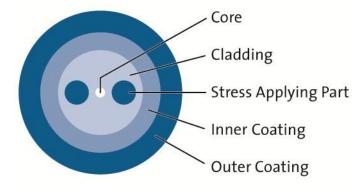
CORNING

PANDA PM Flame Retardant Specialty Fibers are 400 µm UV coated fibers buffered to 900 μm with a flame retardant polyester elastomer. The buffer is a UL[®] recognized component plastic with a flammability classification of V-O in accordance with UL94. In addition, the buffered fiber has a VW-1 end product flammability classification in accordance with UL1581. All PANDA PM fibers are designed with the best polarization maintaining properties and are the industry standard in the world today, offer low attenuation and excellent birefringence for high performance applications.

Polarization Maintaining Fibers Buffered with Polyester Elastomer

Applications:

- Systems with requirements for low flammability
- Gyroscopes and interferometers
- High performance transmission laser pigtails
- Polarization-based modulators
- High data rate communications systems
- Polarization-sensitive components


- Tight buffer composed of polyester elastomer and flame retarder is a UL[®] recognized component plastic with a flammability classification of V-O in accordance with UL94
- Fibers have a VW-1 end product flammability classification in accordance with UL1581
- Extremely high birefringence
- · Excellent polarization maintaining properties
- Low attenuation.

	PM 1550	PM14XX	PM 1300	PM 980	PM 850	PM 630	PM 480	PM 400
Key Optical Specifications								
Wavelength (nm)	1550	1400-1490	1300	980	850	630	480	410
Mode-field Diameter (µm)	10.5 ± 0.5	9.8 ± 0.5	9.0 ± 0.5	6.6 ± 0.5	5.5 ± 0.5	4.5 ± 0.5	4.0 ± 0.5	3.5 ± 0.5
Beat Length Range (mm)	3.0-5.0	2.8-4.7	2.5-4.0	1.5-2.7	1.0-2.0	≤ 2.0	≤ 2.0	≤ 1.7
Maximum Cross Talk at 100 m (dB)	-30	-30	-30	-30	-30	-30	-30	-30*
Typical Cross Talk at 4 m (dB)	-40	-40	-40	-40	-40	-40	-40	-40
Cutoff Wavelength (nm)	1300-1440	1260-1380	1130-1270	870-950	650-800	520-620	400-470	330-400
Maximum Attenuation (dB/km)	0.5	1.0	1.0	2.5	3.0	12	30	≤ 50

Key Geometric, Mechanical and Environmental Specifications (-H90D)			יט	V Polyester-	Elastomer			
Part Number	PM 15-H90D	PM15-H90D PM14-H90D PM13-H90D PM98-H90D PM85-H90D PM63-H90D					PM48-H90D	PM40-H90D
Core-to-Cladding Offset (µm)	≤ 0.5							
Coating Outer Diameter (µm)	900 ± 100							
Cladding Outer Diameter (µm)	125 ± 1							
Standard Lengths*	100 m, 200 m, 300 m, 400 m, 500 m, 1 km							
Proof Test (kpsi)	100 or 200							
Operating Temperature (°C)	-40 to 85							

* For longer lengths contact Corning

Typical Cross-sectional View of PANDA PM Specialty Optical Fiber

PANDA PM Specialty Optical Fiber design uses two stress applying parts to create an extremely high birefringence, resulting in fiber with excellent polarization maintaining properties. This design was invented and patented by Corning Incorporated. Corning continues to have a manufacturing partnership with Fujikura Ltd.

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com © 2012 Corning Incorporated

M0500018 Issued: November 2013 Supersedes: December 2012

PANDA PM High NA Specialty Optical Fibers

CORNING

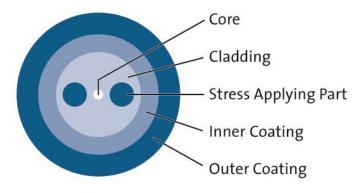
Designed for demanding applications including fiber optic gyroscopes, probes, sensors and miniaturized components, PANDA PM high numerical aperture (NA) fibers deliver extremely high birefringence, low insertion loss and excellent dimensional uniformity.

High Numerical Aperture Polarization Maintaining Fibers

Applications:

- Fiber optic gyroscopes
- Sensors
- Probes / Instrumentation
- Miniaturized components
- Polarization sensitive components

- High numerical aperture
- Extremely high birefringence
- 80 µm cladding for 850 nm fiber
- Single-mode design
- Dual-layer UV acrylate coating
- Proof test available in 100 kpsi or 200 kpsi


PM 1300 (High NA)

RC PM 850 (High NA)

Key Optical Specifications		
Wavelength (nm)	1300	850
Mode-field Diameter (µm)	5.5 ± 1	3.5 ± 0.5
Maximum Beat Length (mm)	≤ 2.5	2.0
Maximum Cross Talk at 100 m (dB)	-30	-30
Typical Cross Talk at 4 m (dB)	-40	-40
Cutoff Wavelength (nm)	1000 - 1290	650 - 800
Maximum Attenuation (dB/km)	2.0	3.5

Key Geometric, Mechanical and E	UV/UV Acrylate				
Part Number	PM13-HNA	RC PM85-HNA			
Coating Outer Diameter (µm)	245 ± 15	165 ± 10			
Cladding Outer Diameter (µm)	125 ± 1	80 ± 1			
Core-to-Cladding Offset (µm)	≤ 0.5	≤ 0.5			
Standard Lengths	100 m, 200 m, 300 m, 400 m, 500 m				
Proof Test (kpsi)	100 or 200				
Operating temperature (°C)	-40 to 85				

Typical Cross-sectional View of PANDA PM Specialty Optical Fiber

PANDA PM Specialty Optical Fiber design uses two stress applying parts to create an extremely high birefringence, resulting in fiber with excellent polarization maintaining properties. This design was invented and patented by Corning Incorporated. Corning continues to have a manufacturing partnership with Fujikura Ltd.

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com © 2012 Corning Incorporated

M0500020 Issued: December 2012 Supersedes: July 2010

PANDA PM Bend Insensitive Specialty Optical Fibers

CORNING

PANDA PM Bend Insensitive Specialty Optical Fiber is designed with significantly improved bending capacity, suited to meet the needs of package size reductions and 100 Gbps systems.

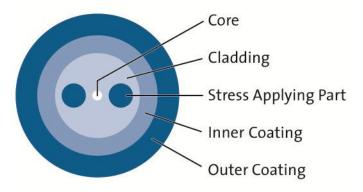
PANDA PM fibers are optimized for high reliability, and our Boron-doped stress rod profile is field proven to support high growth applications over a wide temperature range.

Polarization Maintaining Fibers for Bend Sensitive Applications

Applications:

- Small package size transponders, transceivers, modulators and laser fiber assemblies
- Sensors
- Bend sensitive applications
- Miniaturized components
- Polarization sensitive components

- Significantly improved bending capacity
- Extremely high birefringence
- Single-mode design
- Fibers available with dual-layer UV acrylate and flame retardant polyester coatings


PM 1550 (Bend Insensitive)

Key Optical Specifications	For all coatings
Wavelength (nm)	1550
Mode-field Diameter (µm)	9.5 ± 0.4
Maximum Beat Length (mm)	2.0 - 5.0
Maximum Cross Talk at 100 m (dB)	-30
Maximum Bending Cross Talk (dB) (30 mm O.D; 1550 nm, 10 turns)	-30
Cutoff Wavelength (nm)	\leq 1440
Maximum Attenuation (dB/km)	0.50
Maximum Bending Loss (dB) (30 mm O.D; 1550 nm, 10 turns)	0.50

Key Geometric, Mechanical and Environmental Specifications

Coating Type	UV/UV Acrylate	UV Acrylate/Polyester-Elastomer			
Part Number	PMSR15-U40D-H	PMSR15-H90D-H			
Core-to-Cladding Offset	≤ 0.5	≤ 0.5			
Coating Outer Diameter (µm)	400 ± 15	900 ± 100			
Cladding Outer Diameter (µm)	125 ± 1	125 ± 1			
Operating temperature (°C)	-40 to 85				
Standard Lengths	100 m, 200 m, 300 m, 400 m, 500 m				
Proof Test (kpsi)	200				

Typical Cross-sectional View of PANDA PM Specialty Optical Fiber

PANDA PM Specialty Optical Fiber design uses two stress applying parts to create an extremely high birefringence, resulting in fiber with excellent polarization maintaining properties. This design was invented and patented by Corning Incorporated. Corning continues to have a manufacturing partnership with Fujikura Ltd.

© 2012 Corning Incorporated

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

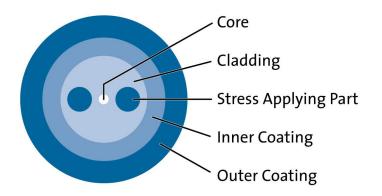
Tel: +1-607-974-9974 Fax: +1-607-974-4122 E-mail: specialtyfiber@corning.com

©

CORNING

RGB PM Specialty Optical Fiber Polarization Maintaining (PM) Fiber

Polarized fiber optimized for RGB wavelength band



The newly designed Panda RGB PM Specialty Optical Fiber is a polarization maintaining fiber optimized for operation over the entire visible spectrum. This increased wavelength range enables greater flexibility by allowing for the use of a single fiber in applications across this region.

Applications:

- Medical
- Spectroscopy
- Display

- Designed for use at wavelengths between 405 nm and 630 nm
- Extremely high birefringence
- Excellent polarization maintaining properties

RGB PM

Key Optical Specifications

Operating Wavelength (nm)	405-640
Cutoff Wavelength (nm)	≤ 4 00
Maximum Attenuation (dB/km)	≤ 50 @ 405 nm
Mode-field Diameter (µm)	2.3 ± 0.6 @ 410 nm
	3.8 ± 1.0 @ 630 nm
Beat Length (mm)	< 2.0 @ 630 nm
Polarization Crosstalk @ 60mm bend diameter dB (dB/10 turn)	-30 @ 630 nm

Key Geometric, Mechanical and Environmental Specifications

Cladding Outside Diameter (µm)	125 ± 1.0
Coating Outside Diameter (µm)	245 ± 15
Core-to-Cladding Offset (µm)	1.0
Proof Test (kpsi)	200
Operating Temperature* (°C)	-40 to 85
Coating	UV Curable Acrylate
Recommended Minimum Bending Radius (mm)	30**

* without coiling on a shipping reel ** set due to crosstalk performance

PANDA PM Specialty Optical Fiber design uses two stress applying parts to create an extremely high birefringence, resulting in fiber with excellent polarization maintaining properties. This design was invented and patented by Corning Incorporated. Corning continues to have a manufacturing partnership with Fujikura Ltd.

For more information about Corning's leadership in Specialty Fiber technology visit our website at www.corning.com/specialtyfiber

To obtain additional technical information, an engineering sample or to place an order for this product, please contact us at:

Corning Incorporated

t +1-607-974-9974 f +1-607-974-4122 specialtyfiber@corning.com © 2012 Corning Incorporated

