Enhanced Survival of LNCaP Cells Following Cryopreservation Using the CryoStor™ CS5 Preservation Solution and Corning® CellBIND® Surface

John M. Baust Ph.D., Ana Maria Pardo, and Todd Upton, Ph.D., BioLife Solutions, Inc., Corning Life Sciences

Abstract

Most cell cryopreservation techniques use a mixture of cell culture media, animal sera and DMSO as a freezing solution, which, combined with slow cooling rates, prevents ice crystal damage and other adverse effects associated with the freezing process (1). However, the rapid recovery of viable, functional cells able to quickly attach and grow in culture is often a problem following cryopreservation. Cells that appear to be viable immediately upon thawing are often discovered to be floating or poorly attached after 24 hours incubation. These cells usually become necrotic or enter apoptosis and, as a result, recover very slowly, if at all. Additionally, these traditional freezing solutions usually contain a protein and/or serum component which can contribute to variability in cell survival, increase contamination risks associated with using animal-derived components and add significant cost to the process.

Here we demonstrate the benefits of using the Corning CellBIND Surface combined with the protein-free BioLife CryoStor™ CS5 freezing solution to improve the survival of LNCaP cells, a human prostate cancer cell line that is difficult to preserve and maintain due to its slow growth and poor attachment properties. The Corning CellBIND Surface is created using a process that improves the cell attachment properties of polystyrene culture vessels. It has been demonstrated to improve the recovery and attachment of LNCaP cells following cryogenic storage (2). The CryoStor CS5 freezing solution was developed by BioLife Solutions to improve cell survival and recovery during and following cryogenic storage (3,4). It contains 5% DMSO and is based on a protein-free formulation originally developed for storage of tissues and organs under hypothermic (4° to 10°C) conditions.

CORNING

Methods and Results

LNCaP cells (obtained from ATCC; CRL-1740) were cryopreserved following ATCC recommendations in either RPMI 1640 medium with 10% fetal bovine serum (FBS) and 5% DMSO (standard freezing medium) or CryoStor CS5 freezing solution. Cells were recovered from liquid nitrogen storage by thawing rapidly and plating into 25cm² (T-25) flasks or 96 well plates with either the Corning® CellBIND® Surface or a standard tissue culture surface. Growth medium was RPMI 1640 plus 10% FBS.

After thawing and 24-hour incubation at 37°C in 5% CO₂, the cells were harvested from T-25 flasks and cell survival measured using a hemacytometer with viability determined by trypan blue exclusion (Figure 1). These experiments were done by Corning scientists. Cell survival (also 24-hours post-thaw) in 96 well plates was determined based on metabolic activity using an almarBlue™ assay (Figure 2). These experiments were done by BioLife Solutions scientists. Each study was performed in triplicate and repeated three times at each study site.

Using the Corning CellBIND surface with standard freezing medium increased LNCaP survival by over 25% compared to the standard tissue culture surface. However, combining CryoStor™ CS5 freezing solution with the Corning CellBIND Surface showed a 58% increase in LNCaP survival over the standard cell culture surface (ANOVA, p = 0.0013). Similar results were observed when cultures were visualized using fluorescent microscopy; the CryoStor CS5 freezing solution and Corning CellBIND Surface combination showed increased cell attachment compared to the standard freezing media and the standard cell culture surface (Figure 3).

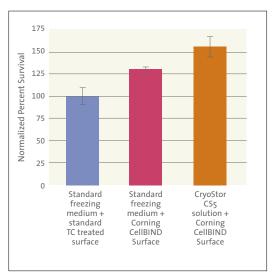
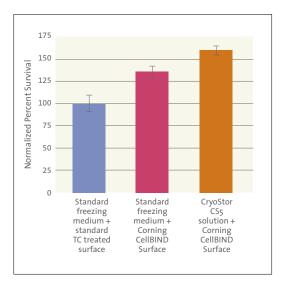
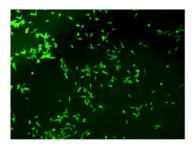
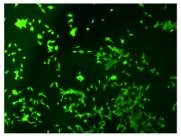
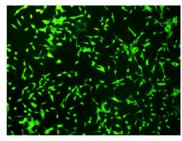


Figure 1. Survival and attachment of cryopreserved LNCaP cells in T-25 flasks 24 hours post-thaw. Survival was determined using direct cell counts (hemacytometers) with results normalized to cultures grown under standard conditions (blue column). Data is an average \pm SD of 3 independent experiments performed by Corning scientists (N = 3 repetitions per group).


Figure 2. Survival and attachment of cryopreserved LNCaP cells in 96 well plates 24 hours post-thaw. Survival was determined using an almarBlue™ assay and results normalized to cultures grown under standard conditions (blue column). Data is an average ± SD of 3 independent experiments performed by BioLife Solutions scientists (N = 3 repetitions per group).

Standard freezing medium plus standard TC surface

Standard freezing medium plus Corning® CellBIND® Surface

CryoStor CS5 freezing solution plus Corning CellBIND Surface

Figure 3. Fluorescent micrographs of cryopreserved LNCaP cells in 96 well plates 24 hours post-thaw. Cells were cryopreserved in either traditional media + 5% DMSO or BioLife CryoStor CS5 (5% DMSO) then thawed and plated onto either Corning CellBIND Surface or the standard tissue culture (TC) surface.

Conclusions

- Combining the Corning CellBIND Surface with the BioLife Solutions CryoStor CS5 freezing solution resulted in significant increases in LNCaP cell survival following cryopreservation.
- CryoStor CS5 freezing solution combined with the Corning CellBIND Surface eliminated the need for proteins or sera in the cryopreservation process, reducing both the costs and the risks associated with using animal-derived sera and proteins.

References

- Ryan, J.A. (2004) General Guide for Cryogenically Storing Animal Cell Cultures. Corning Life Sciences Technical Monograph TC-306: PDF can be downloaded from Technical Information/ Cell Culture at www.corning.com/lifesciences.
- Pardo, A.M., Upton, T., and Hoover, D.S. (2004) Enhanced Attachment of LNCaP Cells to the Corning CellBIND Surface. Corning Life Sciences Technical Monograph CLS-AN-048: PDF can be downloaded from Technical Information/Cell Culture at www.corning.com/ lifesciences.
- Baust, J.M., Van Buskirk, R. and Baust, J. (2000) Cell Viability Improves Following Inhibition of Cryopreservation-Induced Apoptosis. *In vitro* Cellular and Developmental Biology, Vol. 36(4):262-270.
- 4. Stylianou, J., Vowels, M., and Hadfield, K. (2006) Novel Cryoprotectant Significantly Improves the Post-Thaw Recovery and Quality of HSC from CB. Cytotherapy. Vol. 8(1):57-61.

For additional product or technical information, please visit **www.corning.com/lifesciences** or call 800.492.1110. Customers outside the United States, please call +1.978.442.2200 or contact your local Corning sales office listed below.

CORNING

Corning Incorporated

Life Sciences

Tower 2, 4th Floor 900 Chelmsford St. Lowell, MA 01851 t 800.492.1110 t 978.442.2200 f 978.442.2476

www.corning.com/lifesciences

Worldwide Support Offices

A SIA / PA CIFIC Australia/New Zealand t 0402-794-347 China

t 86-21-5467-4666 f 86-21-5407-5899 India

t 91 124 4604000 f 91 124 4604099 Japan t 81 3-3586 1996 f 81 3-3586 1291

Korea t 82 2-796-9500 f 82 2-796-9300

Singapore t 65 6733-6511 f 65 6861-2913

Taiwan t 886 2-2716-0338 f 886 2-2716-0339 **EUROPE France** t 0800 916 882

f 0800 918 636 **Germany** t 0800 101 1153

f 0800 101 2427 **The Netherlands** t 31 20 655 79 28 f 31 20 659 76 73

United Kingdom t 0800 376 8660 f 0800 279 1117

All Other European Countries

t 31 (0) 20 659 60 51 f 31 (0) 20 659 76 73

LATIN AMERICA

Brasil t (55-11) 3089-7419 f (55-11) 3167-0700

Mexico t (52-81) 8158-8400 f (52-81) 8313-8589